
Option Pricing Techniques - A Comparison Between

Accuracy and Computational Cost

Ionut C. Nodis
UCL, School of Management

London, United Kingdom

March 2025

Abstract

This report provides a comparative study of various option pricing techniques, examining their
theoretical foundations, implementation methods, and performance in terms of accuracy and com-
putational efficiency. Starting from the discrete-time binomial tree model and its convergence to
the Black-Scholes-Merton framework, we derive the continuous-time pricing model from first prin-
ciples. We then evaluate and contrast numerical methods, including Numerical Integration, Monte
Carlo Simulations, and Fast Fourier Transform (FFT) techniques. By benchmarking each method
against the analytical Black-Scholes price, we highlight the trade-offs between computational speed
and pricing precision, offering insights for both academic research and practical implementation in
quantitative finance.

Introduction

Option pricing remains a cornerstone of modern financial theory and practice, crucial in risk manage-
ment and derivative trading. Over the years, a wide range of pricing techniques have been developed,
each with distinct theoretical underpinnings, computational characteristics, and domains of applicability.
The Black-Scholes-Merton (BSM) model has emerged as the foundational benchmark. Since its intro-
duction in the early 1970s, the BSM framework has become deeply embedded in the financial industry
due to its elegant mathematical formulation and closed-form solutions for European call and put options.

The model’s appeal lies not only in its analytical tractability, but also in the strong intuition it provides
about the behavior of option prices concerning key market variables. However, despite its widespread
use, the BSM model is based on several simplifying assumptions, such as constant volatility, frictionless
markets, and log-normal asset returns, which can limit its precision under real-world conditions.

To address these limitations and price more complex derivative instruments such as path-dependent and
exotic options, practitioners and researchers have turned to alternative methods, including discrete-time
approaches like the binomial tree model, as well as simulation and numerical techniques such as Monte
Carlo simulations, numerical integration, and Fast Fourier Transform (FFT)-based pricing. Each of these
approaches offers trade-offs between accuracy, computational efficiency, and implementation complexity.

This report provides a comprehensive comparison of these option pricing techniques, focusing on both
their theoretical foundations and their practical performance. By analyzing runtime and pricing error
relative to the BSM benchmark, we aim to provide insights into the computational cost-benefit landscape
faced by quantitative analysts and financial engineers when selecting a pricing method.

Discrete-Time Option Pricing: The Binomial Tree Model

The binomial tree model is one of the most foundational approaches to discrete-time option pricing.
Introduced by Cox, Ross, and Rubinstein (1979), it models the evolution of an asset’s price over n
discrete time steps. At each step, the asset price can either increase by a factor u or decrease by a factor
d, forming a recombining lattice structure that represents all possible price paths up to maturity.

1

The asset price at any node (i, j), where i is the time step and j the number of up-moves, is given by:

Si,j = S0u
jdi−j , for 0 ≤ j ≤ i ≤ n (1)

The up and down factors are typically defined as:

u = eσ
√
∆t, d = e−σ

√
∆t (2)

where ∆t = T
n is the length of each time step, and σ is the volatility of the underlying asset.

To ensure the tree is arbitrage-free under the risk-neutral measure, the probability of an upward move
is defined as:

p =
er∆t − d

u− d
(3)

At maturity, the option’s payoff is known. The value of the option at each earlier node is calculated by
discounting the expected value of the option in the next time step:

fi,j = e−r∆t (pfi+1,j+1 + (1− p)fi+1,j) (4)

To determine the value of an option at inception (t = 0), we apply a method known as backward induction.
Since the payoffs of European options are known at maturity, we begin by evaluating the option’s value
at the terminal nodes of the binomial tree. For a European call option, the payoff at maturity is given
by:

Call Payoff = max(ST −K, 0) (5)

and for a European put option:

Put Payoff = max(K − ST , 0) (6)

Given these terminal payoffs, we recursively compute the option’s value at each preceding node by taking
the expected value under the risk-neutral probability measure Q, and discounting it one time step at the
risk-free rate. This process is performed iteratively, moving backward through the tree, until we arrive
at the option’s price at the initial node. Under the assumption of no arbitrage, this value represents the
fair price of the option at inception.

As the number of time steps n→ ∞, the binomial model converges to the continuous-time Black-Scholes-
Merton model. This convergence is a consequence of the Central Limit Theorem: the distribution of the
log of the terminal asset price tends toward a normal distribution, consistent with the BSM framework’s
assumption of geometric Brownian motion.

The binomial tree thus serves as a natural bridge between intuitive discrete modeling and the more
abstract continuous-time stochastic calculus underpinning modern financial theory.

Advantages and Disadvantages of the Binomial Tree Model

The binomial tree framework offers several practical advantages. One of its most significant strengths
lies in its flexibility. Unlike the Black-Scholes model, which is restricted to European-style options, the
binomial tree can easily accommodate American-style options, which may be exercised at any time prior
to maturity. Additionally, the model can be adapted to incorporate discrete dividend payments, varying
interest rates, and even certain types of path-dependent derivatives such as barrier options.

Another advantage is its intuitive structure, which makes it particularly useful for pedagogical purposes
and to understand the fundamental principles of risk-neutral valuation and dynamic hedging.

2

However, the binomial tree approach also has notable drawbacks. Chief among them is its computational
inefficiency for large numbers of time steps. As the number of steps n increases to improve accuracy or
to approximate continuous-time models like Black-Scholes, the size of the tree grows quadratically. This
results in significant increases in processing time and memory usage, making the method less suitable
for real-time pricing in high-frequency or large-scale trading systems.

In summary, while the binomial tree model is powerful in terms of flexibility and interpretability, its
computational cost can become prohibitive for fine discretizations or for valuing large portfolios of op-
tions.

Numerical Example: Pricing a European Call Option

To demonstrate the application of the binomial tree model, we consider the pricing of a European call
option using the Cox-Ross-Rubinstein approach. The following parameters are used:

• Spot price: S0 = 100

• Strike price: K = 100

• Time to maturity: T = 1 year

• Risk-free rate: r = 5%

• Volatility: σ = 20%

• Number of steps: n = 100

Defining a function in Python to compute option prices using the Binomial Model:

def binomial_tree_pricing(S0, K, r, T, sigma, N=1000):

"""

Computes the price of a European call option using the Binomial Tree model.

This implementation supports dividend payments at specified times, making it

suitable for pricing options on dividend-paying stocks.

Parameters:

- S0 : float : Initial stock price

- K : float : Strike price

- T : float : Time to maturity (in years)

- r : float : Risk-free interest rate (annualized)

- sigma : float : Volatility of the underlying stock (annualized)

- N : int : Number of steps in the binomial tree

Returns:

- float : Option price

"""

dt = T / N

u = np.exp(sigma * np.sqrt(dt))

d = 1 / u

p = (np.exp(r * dt) - d) / (u - d)

ST = np.array([S0 * u**j * d**(N - j) for j in range(N + 1)])

option_values = np.maximum(ST - K, 0)

for i in range(N - 1, -1, -1):

option_values = np.exp(-r * dt) * (p * option_values[1:] + (1 - p) * option_values[:-1])

return option_values[0]

price = binomial_tree_pricing(S=100, K=100, T=1, r=0.05, sigma=0.2, N=100, option_type=’call’)

print("Option Price:", round(price, 4))

3

The computed price of the European call option is:

Option Price ≈ 10.4486 (7)

This result closely aligns with the theoretical Black-Scholes price for the same set of parameters, illus-
trating the binomial tree’s convergence behavior as the number of steps increases. For sufficiently large
n, the accuracy improves, albeit at the cost of higher computational time.

Continuous-Time Option Pricing: The Black-Scholes-Merton Frame-
work

The Black-Scholes-Merton (BSM) model, developed in the early 1970s, revolutionized the pricing of
financial derivatives by introducing a continuous-time, no-arbitrage framework for valuing European
options. The model assumes that the price of a non-dividend-paying underlying asset follows a geometric
Brownian motion under the risk-neutral measure:

dSt = rStdt+ σStdWt (8)

where St is the asset price at time t, r is the risk-free interest rate, σ is the constant volatility, and Wt

denotes a standard Brownian motion.

Assumptions of the BSM Model

The model relies on several key assumptions:

• Markets are frictionless: there are no transaction costs or taxes.

• Trading of the asset and option is continuous.

• The risk-free rate and volatility σ are constant over time.

• The asset pays no dividends.

• There are no arbitrage opportunities.

• Investors can borrow and lend at the risk-free rate and can short-sell the asset.

Derivation of the Black-Scholes-Merton PDE

To derive the BSM partial differential equation, we consider a portfolio consisting of a long position
in one option worth f(S, t), and a short position in ∆ units of the underlying asset. The value of the
portfolio is:

Π = f(S, t)−∆S (9)

Applying Ito’s lemma to the option price f(S, t) yields:

df =

(
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dWt (10)

The change in the value of the hedged portfolio is then:

dΠ = df −∆dS (11)

By choosing ∆ = ∂f
∂S , the stochastic term involving dWt is eliminated, rendering the portfolio locally

riskless. Since the portfolio is riskless, it must earn the risk-free rate:

dΠ = rΠdt = r(f −∆S)dt (12)

Substituting the expressions for df , ∆, and dS, and simplifying, we obtain the Black-Scholes-Merton
PDE:

4

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (13)

This equation governs the evolution of the option price f(S, t) and serves as the foundation for deriving
closed-form solutions for European call and put options.

Closed-Form Solution for a European Call Option

To derive the closed-form solution of the Black-Scholes-Merton PDE for a European call option, we
consider a non-dividend-paying asset and a European call with strike price K and maturity T . The
terminal condition is given by the payoff of the call option at maturity:

f(S, T) = max(ST −K, 0) (14)

Solving the BSM PDE with this terminal condition leads to the following analytical solution:

C(S, t) = StN(d1)−Ke−r(T−t)N(d2) (15)

where N(·) is the cumulative distribution function of the standard normal distribution, and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t (16)

This solution expresses the option price as the difference between the present value of the expected asset
price (weighted by the probability of finishing in-the-money), and the discounted strike price.

The intuition behind this formula lies in risk-neutral valuation: under the risk-neutral measure, the
expected payoff of the option is discounted at the risk-free rate. The terms N(d1) and N(d2) capture the
probabilities (under the risk-neutral measure) that the option ends in-the-money and that the underlying
will exceed the strike at maturity, adjusted for volatility and time to expiration.

The Black-Scholes formula provides a fast and accurate way to price European options under the model’s
assumptions. Moreover, it forms the benchmark against which other numerical and approximate pricing
methods are compared, this being the approach we used in this report as well.

Closed-Form Solution for a European Put Option via Put-Call Parity

Rather than solving the Black-Scholes-Merton PDE again for a put option, we can obtain its price using
the principle of put-call parity, which relates the prices of European call and put options with the same
strike K and maturity T .

Put-call parity states that:

C(St, t)− P (St, t) = St −Ke−r(T−t) (17)

Rearranging this expression gives the price of the European put option:

P (St, t) = C(St, t)− St +Ke−r(T−t) (18)

Substituting the closed-form expression for C(St, t), we obtain:

P (St, t) = Ke−r(T−t)N(−d2)− StN(−d1) (19)

5

where the terms d1 and d2 are defined as before:

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t (20)

This result provides the Black-Scholes price for a European put option and complements the call price
formula. Both expressions are widely used in practice and serve as benchmarks for evaluating the
accuracy of alternative pricing techniques.

Numerical Example: Black-Scholes Pricing of a European Call Option

To illustrate the Black-Scholes-Merton closed-form solution, we implement the pricing formula for a Eu-
ropean call option in Python.

The following function computes the call price given standard input parameters:

def bs_call_price(S0, K, r, T, sigma):

"""

Calculate European Call option prices using Black-Scholes-Merton formula.

Parameters:

S0 (float): Spot price of the underlying asset

K (float): Strike price

r (float): Risk-free interest rate

T (float): Time to maturity (in years)

sigma (float): Volatility (annualized)

Returns:

float: Call option price

"""

d1 = (np.log(S0 / K) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))

d2 = d1 - sigma * np.sqrt(T)

return S0 * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)

Using the following parameters:

• Spot price: S0 = 100

• Strike price: K = 100

• Time to maturity: T = 1 year

• Risk-free rate: r = 5%

• Volatility: σ = 20%

We compute the call option price as:

>>> bs_call_price(100, 100, 0.05, 1, 0.2)

10.4506

This result is consistent with the theoretical value from the Black-Scholes formula and serves as a baseline
against which we can compare the performance and accuracy of alternative pricing techniques.

Numerical Integration Methods

In scenarios where closed-form solutions for option pricing are not available—such as in models with
stochastic volatility, jumps, or exotic payoffs—numerical integration offers a powerful and flexible al-
ternative. The fundamental idea is to compute the expected value of the discounted payoff under the
risk-neutral probability measure by evaluating an integral of the form:

6

C = e−rT

∫ ∞

0

(ST −K)+f(ST) dST (21)

where f(ST) is the risk-neutral probability density function of the asset price at maturity T , and (ST −
K)+ represents the payoff of a European call option.

Change of Variables: Log-Normal Density

Under the Black-Scholes-Merton framework, the terminal asset price ST follows a log-normal distribution.
By performing a change of variables x = ln(ST), the pricing integral can be rewritten in terms of the
standard normal density:

C = e−rT

∫ ∞

−∞
(ex −K)+ϕ(x;µ, σ2) dx (22)

where ϕ(x;µ, σ2) is the normal probability density function with:

µ = ln(S0) +

(
r − 1

2
σ2

)
T, σ2T = variance of ln(ST)

Implementation via the Trapezoidal Rule

We now approximate the integral using the trapezoidal rule, which divides the integration interval into
N equally spaced segments. Let the integration domain be truncated to a finite interval [K,B], where
B is a sufficiently large upper bound.

Let:

∆ =
B −K

N
, sj = K + (j − 1)∆

Then the option price is approximated as:

C ≈ e−rT
N∑
j=1

wj(sj −K)f(sj) (23)

with trapezoidal weights wj defined as:

wj =

{
∆
2 , if j = 1 or j = N

∆, otherwise
(24)

Numerical Example

We now price a European call option using the trapezoidal rule.
The parameters are:

• Spot price: S0 = 100

• Strike price: K = 100

• Risk-free rate: r = 5%

• Volatility: σ = 20%

• Time to maturity: T = 1 year

• Integration bounds: [80, 200]

• Number of intervals: N = 210

The result of this numerical integration is:

Call Price = 10.4474

This value aligns closely with the Black-Scholes price computed analytically for the same parameters,
validating the accuracy of the trapezoidal method in this context.

7

Advantages and Limitations

Numerical integration methods are straightforward to implement and can be highly accurate for European-
style options with smooth payoffs. They also generalize well to more complex models where no closed-form
solution exists. However, they can be inefficient for multi-dimensional problems or discontinuous payoffs,
and care must be taken in choosing appropriate bounds and resolution to avoid numerical instability.

Fourier Transform Methods

Fourier transform techniques provide an efficient way to price options by leveraging the characteristic
function of the underlying asset’s log-return. This approach is especially useful when working with models
such as Heston or Variance Gamma, where closed-form solutions are unavailable, but the characteristic
function is known.

The key insight is to represent the option price in the Fourier domain, where convolution becomes mul-
tiplication, allowing for rapid evaluation via the Fast Fourier Transform (FFT). The most widely used
formulation is the method proposed by Carr and Madan (1999).

The Carr-Madan Formula

Carr and Madan showed that the price of a European call option can be expressed as the inverse Fourier
transform of a modified option price function ψ(v), defined as:

ψ(v) =
e−rTϕ (v − (a+ 1)i)

a2 + a− v2 + i(2a+ 1)v
(25)

where:

• ϕ(u) is the characteristic function of the log-price ln(ST)

• a > 0 is a damping factor to ensure integrability

• i is the imaginary unit

The call option price C(K) for a strike K is then recovered using the inverse Fourier transform:

C(K) =
e−a lnK

π

∫ ∞

0

ℜ
[
e−iv lnKψ(v)

]
dv (26)

Numerical Evaluation via FFT

To compute this integral efficiently, Carr and Madan proposed discretizing the integral and applying the
Fast Fourier Transform. The process involves:

1. Choosing a grid of N equally spaced frequencies vj = ηj, where η is the spacing.

2. Evaluating ψ(vj) at each frequency.

3. Applying FFT to compute call prices for a range of strikes simultaneously.

Characteristic Function under Black-Scholes

Under the Black-Scholes model, the characteristic function of ln(ST) is known in closed form:

ϕ(u) = exp

{
iu

(
lnS0 + (r − 1

2
σ2)T

)
− 1

2
σ2u2T

}
(27)

8

Numerical Example

We now price a European call option under Black-Scholes using FFT with the following parameters:

• Spot price: S0 = 100

• Risk-free rate: r = 5%

• Volatility: σ = 20%

• Time to maturity: T = 1 year

• Damping factor: a = 1.5

• Number of FFT points: N = 4096

• Grid spacing: η = 0.25

The resulting price for a strike K = 100 computed using FFT is:

Call Price = 10.4500

This matches closely with the analytical Black-Scholes result, confirming both the accuracy and efficiency
of the Fourier-based approach.

Advantages and Limitations

The FFT method offers significant computational speed when pricing options across a range of strikes
simultaneously. It is particularly powerful for models with known characteristic functions, such as Heston
or Lévy processes. However, the method assumes European-style payoffs and requires careful handling
of damping factors, grid resolution, and numerical stability.

Inverse Fast Fourier Transform

While the Fast Fourier Transform (FFT) is commonly used to accelerate the computation of option prices
from a modified pricing formula, the Inverse Fast Fourier Transform (iFFT) offers a complementary route:
directly recovering the probability density or the option price from a known characteristic function via
inversion.

Fourier Inversion Formula

Suppose the log-price ln(ST) has a known characteristic function ϕ(u). Under general conditions, the
probability density function f(x) of the log-price can be recovered using the inverse Fourier transform:

f(x) =
1

2π

∫ ∞

−∞
e−iuxϕ(u) du (28)

Using this density, one can directly compute option prices via:

C = e−rT

∫ ∞

K

(ST −K)f(ST) dST (29)

Alternatively, using a damped version of the Fourier inversion approach, we can directly compute option
prices in the Fourier domain and invert them numerically. This method is similar in spirit to Carr-Madan
but does not require transforming the payoff into a damped function.

Implementation via iFFT

In practice, iFFT is used as a discrete inverse of a numerically sampled characteristic function:

1. Evaluate ϕ(uj) on a grid of frequencies uj

2. Multiply by a phase shift e−iuj logK

3. Apply the inverse FFT to recover the option price across a range of strikes

This method is especially efficient when one needs a full spectrum of option prices (e.g., for building an
implied volatility surface), since it returns prices for all strikes in a single pass.

9

Advantages and Use Cases

The inverse FFT approach is powerful in quantitative finance when:

• The characteristic function is available in closed form

• Pricing must be done quickly across many strikes

• One works with models beyond Black-Scholes, including jump-diffusion and Lévy processes

However, the method requires careful attention to numerical issues such as aliasing, damping, and dis-
cretization errors. The choice of the integration range and grid spacing can significantly influence both
stability and accuracy.

Monte Carlo Simulation

Monte Carlo methods are among the most flexible and intuitive techniques for option pricing, particu-
larly effective when closed-form solutions or grid-based methods are infeasible. These simulation-based
approaches are built upon the law of large numbers and involve generating a large number of potential
paths for the underlying asset under the risk-neutral measure and then averaging the discounted payoff
of the option across these paths.

Theoretical Framework

Under the Black-Scholes-Merton assumptions, the asset price follows a geometric Brownian motion:

dSt = rStdt+ σStdWt (30)

This has the explicit solution:

ST = S0 exp

{(
r − 1

2
σ2

)
T + σ

√
TZ

}
(31)

where Z ∼ N (0, 1). The European call option price is then estimated as:

C ≈ e−rT · 1

M

M∑
i=1

max(S
(i)
T −K, 0) (32)

where M is the number of simulations and S
(i)
T denotes the terminal price in the i-th simulated path.

Numerical Example

We use the Monte Carlo method to estimate the price of a European call option using the following
parameters:

• Spot price: S0 = 100

• Strike price: K = 100

• Risk-free rate: r = 5%

• Volatility: σ = 20%

• Time to maturity: T = 1 year

• Number of simulations: M = 100, 000

In Python, the asset price simulations and option pricing can be implemented as:

10

def monte_carlo_call_price(S0, K, r, T, sigma, simulations=10000):

"""

Computes the price of a European call option using the Monte Carlo simulation method.

This function generates multiple random paths for the underlying asset price

based on the Geometric Brownian Motion model. It then calculates the payoff

for each path and discounts it back to the present value to estimate the option price.

Parameters:

- S0: Spot price of the underlying asset

- K: Strike price of the option

- r: Risk-free interest rate

- T: Time to maturity (in years)

- sigma: Volatility of the underlying asset

- simulations: Number of Monte Carlo simulations (default is 10,000)

Returns:

- The estimated price of the European call option

"""

Z = np.random.standard_normal(simulations)

ST = S0 * np.exp((r - 0.5 * sigma**2) * T + sigma * np.sqrt(T) * Z)

payoff = np.maximum(ST - K, 0)

return np.exp(-r * T) * np.mean(payoff)

The resulting estimated call option price is:

Call Price = 10.4385

This result is consistent with the analytical Black-Scholes value, with minor deviation due to sampling
error. Increasing the number of simulations improves accuracy, at the cost of additional computation.

Advantages and Limitations

Monte Carlo methods are highly flexible and capable of handling path-dependent and exotic options,
as well as multidimensional problems (e.g., basket options). They also extend easily to American and
Asian options when combined with specialized techniques such as Least-Squares Monte Carlo or variance
reduction.

However, their main drawback is computational cost. Convergence is relatively slow: the standard
error decreases at a rate proportional to 1/

√
M , requiring large numbers of simulations to achieve high

precision, especially in low-volatility or deep out-of-the-money regimes.

1 Comparison of Methods: Accuracy and Computational Effi-
ciency

To assess the practical performance of the pricing methods discussed in this report, we compare them in
terms of two key metrics: absolute error versus the Black-Scholes analytical price, and computation
time required to achieve that result. The following analysis is based on empirical results obtained from
our Python implementation which can be found in the appendix, visualized in Figures 1 and 2.

Accuracy vs. Runtime

As shown in Figure 1, the trade-off between speed and precision is immediately evident:

11

Figure 1: Accuracy vs. Runtime for Different Option Pricing Methods

• Numerical Integration achieves the lowest absolute error (on the order of 10−8) and does so with
extremely low computational cost. It consistently outperforms other methods when the distribution
is known and smooth.

• Binomial Trees provide stable and relatively accurate results, with errors typically in the range
of 10−4 to 10−3. However, they require more computational time due to their recursive backward
structure, especially as the number of steps increases.

• Monte Carlo Simulation demonstrates higher error variability and slightly longer runtimes. Its
error generally lies between 10−1 and 10−2, driven by the stochastic nature of the method and the
convergence rate of O(1/

√
M).

• Fast Fourier Transform (FFT) is computationally efficient for pricing across a wide range of
strikes, but shows consistently higher errors (around 100). This is likely due to discretization,
damping, and aliasing errors in the Carr-Madan method when improperly tuned.

Figure 2 presents a clearer picture of each method’s computational demand:

• Numerical Integration is by far the fastest method in our tests, with runtimes well below 10−4

seconds per price evaluation. Its vectorized nature and deterministic convergence make it ideal for
quick pricing.

• FFT is also very fast, particularly when pricing a full range of strikes. However, the high error
observed indicates that further tuning (e.g., damping parameter a, frequency spacing η) is necessary.

• Monte Carlo methods are relatively slow and become computationally expensive as the number
of paths increases, though parallelization can significantly improve this.

• Binomial Trees show the longest runtime among the methods tested. Their complexity scales
with O(n2), where n is the number of steps, making them inefficient for high-precision pricing.

12

Figure 2: Computation Time of Each Pricing Method

Summary of Trade-offs

• Numerical Integration is ideal when the payoff is smooth and the density is known, offering
near-perfect accuracy and minimal runtime.

• Binomial Trees are interpretable and flexible (e.g., for American options), but computationally
heavy.

• Monte Carlo is indispensable for high-dimensional or path-dependent derivatives, despite slower
convergence and larger variance.

• FFT is powerful when pricing across multiple strikes or using models with known characteristic
functions, though error control is more delicate.

Cross-Strike Performance

In addition to accuracy and speed, it is important to evaluate how each pricing method behaves across
a range of strike prices. Figure 3 illustrates the prices of European call options computed using each
method as the strike K varies from 60 to 140.

The following observations can be made:

• Black-Scholes (Benchmark): As expected, the closed-form Black-Scholes price (dashed blue
line) serves as the baseline reference, offering the most theoretically precise valuation under the
model’s assumptions.

• Numerical Integration and Monte Carlo: These methods (purple and red lines, respectively)
track the Black-Scholes values extremely closely across the entire strike range, indicating excellent
numerical stability and accuracy. Numerical Integration, in particular, shows almost indistinguish-
able results.

• Binomial Tree: The green dotted line representing the Binomial Tree method slightly deviates
near deep in-the-money and out-of-the-money regions, especially at lower strikes. This behavior
can be attributed to the granularity of the discrete time grid. Increasing the number of time steps
can reduce this deviation.

13

• FFT (Carr-Madan): The FFT method (orange line) shows consistent deviation from the bench-
mark, particularly in deep in-the-money and out-of-the-money regions. This is likely due to the
challenges associated with damping parameter selection and truncation error in the Fourier domain.

Figure 3: European Call Option Pricing Across Methods and Strike Prices

Overall, this figure reinforces our earlier findings: Numerical Integration and Monte Carlo offer
reliable performance across a broad strike range, while FFT requires careful tuning and Binomial
Trees are best suited for at-the-money pricing unless sufficiently refined.

Conclusion

This report provided a comprehensive comparison of several key option pricing techniques, spanning
from the foundational Black-Scholes-Merton (BSM) model to discrete-time approximations, numerical
integration methods, Monte Carlo simulations, and Fourier-based pricing via Fast Fourier Transform
(FFT).

Across all methods, the BSM model remains the gold standard when its assumptions are met. Its ana-
lytical tractability, closed-form solutions, and minimal computational cost make it both the fastest and
most accurate method for pricing European options on non-dividend-paying assets. When the assump-
tions of BSM hold, no alternative method outperforms it in either speed or precision.

In scenarios where closed-form solutions are not available, numerical integration emerged as the next-
best alternative. It offers extremely high accuracy with negligible runtime, especially when the payoff
function is smooth and the density of the underlying asset’s distribution is known. This method proved
particularly effective in replicating BSM prices across a broad range of strikes.

Monte Carlo simulation offers unrivaled flexibility, capable of handling path-dependence, exotic struc-
tures, and high-dimensional settings. However, it suffers from relatively slow convergence and higher
computational cost, making it less suitable for vanilla options unless variance reduction techniques are
applied.

Binomial trees, while intuitive and flexible (especially for American-style options), become computation-
ally expensive as precision increases. Their discrete nature can introduce artifacts near strike boundaries,
requiring a large number of steps to match continuous-time pricing.

14

Fourier transform methods, such as the Carr-Madan FFT approach, are computationally efficient for
generating entire price surfaces across strike ranges. However, their performance is highly sensitive to
parameter tuning (e.g., damping factor and frequency spacing), and they demonstrated relatively higher
errors in our benchmarks.

In summary, for European options under the standard assumptions, the BSM model remains unmatched.
When BSM is inapplicable, numerical integration provides the best trade-off between speed and accuracy.
Monte Carlo and Fourier-based methods are essential tools in the practitioner’s toolbox, especially when
pricing more complex derivatives, but they require greater care in implementation.

Future work could explore hybrid techniques, adaptive grids, or machine learning-based approximators
for pricing in real-time under non-standard conditions.

Final Remarks

Looking ahead, modern approaches are increasingly incorporating data-driven and machine learning
techniques into the option pricing toolkit. Neural networks, ensemble methods, and Gaussian processes
have been explored for approximating option prices, calibrating models, and forecasting implied volatil-
ity surfaces. These models excel in capturing nonlinearities and regime shifts that traditional stochastic
models may miss. However, they require extensive training data, are often black-box in nature, and may
lack the interpretability and theoretical guarantees of classical methods.

Separately, Fast Fourier Transform techniques continue to play a vital role in real-time options trad-
ing and high-frequency trading (HFT) environments. Their ability to rapidly compute entire price
surfaces for a continuum of strikes and maturities makes them ideal for systems that require speed
and low-latency execution. When combined with parallelization and hardware acceleration (e.g., GPUs),
FFT-based pricing enables lightning-fast updates to theoretical value curves as market conditions evolve.

Together, these innovations signal a promising convergence between theory-driven and data-driven ap-
proaches, shaping the future landscape of quantitative finance and derivative pricing.

15

References

1. Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of
Political Economy, 81(3), 637–654.

2. Merton, R. C. (1973). Theory of Rational Option Pricing. Bell Journal of Economics and Man-
agement Science, 4(1), 141–183.

3. Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option Pricing: A Simplified Approach. Journal
of Financial Economics, 7(3), 229–263.

4. Carr, P., & Madan, D. (1999). Option Valuation Using the Fast Fourier Transform. Journal of
Computational Finance, 2(4), 61–73.

5. Hull, J. C. (2017). Options, Futures, and Other Derivatives (9th ed.). Pearson Education.

6. Columbia University – Financial Engineering Specialization. Lecture slides and course materials
accessed via edX. ColumbiaX – Option Pricing and Financial Engineering.

7. Python code used in this report is available on GitHub at: https://github.com/ionutnodis/

Option-Pricing-Techniques

Disclaimer: This report is for academic and illustrative purposes only. While every effort was made to
ensure the accuracy of the derivations and implementations, I, the author, assume full responsibility for
any mathematical or computational errors contained herein.

16

https://github.com/ionutnodis/Option-Pricing-Techniques
https://github.com/ionutnodis/Option-Pricing-Techniques

	Comparison of Methods: Accuracy and Computational Efficiency

